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ABSTRACT

Mittet, R., Amundsen, L. and Arntsen, B., 1994. Iterative inversion/migration with complete
boundary conditions for the residual misfit field. Journal of Seismic Exploration, 3: 141-156.

An integral representation of an elastic inversion aigorithm, having a strong formal
resemblance to prestack migration schemes, is developed by requiring that the retropropagation of
the misrit wavetield should have a complete set of boundary conditions similar to the Kirchhoff
integrai. This can be achieved by using the error-energy-flux density as a kernel in the misfit
funcrion.

In order to have a non-negative objective function for the proposed scheme, the measured
data must be preprocessed in order to remove free-surtface related multiple reflections.

KEY WORDS: seismic migration, seismic inversion, the Kirchhoff integral, misfit function,
boundary conditions.

INTRODUCTION

A physical problem approximated by a differential equation is not solved
by solving the differential equation alone, also the boundary conditions to be
satisfied must be implemented in order to fix one particular solution. Hyperbolic
differential equations with open boundaries (that is, the field can escape to
infiniry in at least one direction) need Cauchy boundary conditions, implying
that the field value and its slope must be specified to give an unique and stable
solution. The Kirchhoff integral for migration of acoustic data is a well-known
example of such a complete boundary condition.
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142 MITTET. AMUNDSEN & ARNTSEN

[nverse schemes designed 1o treat generally inhomogeneous media will,
for reaiistically sized problems. have many unknowns and finite difference
calculations of Fréchet derivatives are too time consuming. However, the
gradient of the misfit function with respect to a physical parameter can be
calculated by time correlating forward modeled data with misfit data (Tarantola,
1984). The retropropagation of the misfit data is a boundary value problem.
Even if the misfit field is not an observable field, it still requires as many
boundary conditions as a real field. In this paper we develop an inversion

scheme for anisotropic media which fit in with this requirement. The practical

similarity between the first iteration of inversion and prestack migration is well
documented (Lailly, 1984). Our scheme will also be formally similar to prestack
migration schemes since the retropropagated field is given by a representation
theorem equal to that used to initiate the retropropagation of the observed field
in prestack migration schemes. It is well known that inverse schemes for
generally inhomogeneous media have convergence problems and that true
physical parameters are hard to recover. A less ambitious approach is to use the
inverse scheme as an iterative prestack migration scheme with a well defined
imaging principle. The formalism developed in this paper can be used as an
inverse scheme, however, the best approach is probably to use this formalism
as an iterative prestack migration scheme. Numerical examples showing how
this method can be used as an iterative prestack migration scheme was described
in Mirtter and Helgesen (1992). An iterative imaging principle, based on the
difference between the model at the current iteration and the initial model was
also given therein. The scheme has also been used successfully on real offset
VSP data giving much improved results as compared to standard processing
schemes.

An acoustic field carries two physical properties: energy and momentum.
[n order to describe the field completely at a boundary surface we need to know
both quantities. This can be obtained by a combined measurement of the normal
displacement acceleration component (or equiv: ‘2ntly the normal derivative of
the pressure) and the pressure. The elastic cas: is slightly more complicated
since the field also carries angular momentum. In Appendix A we give the
representation theorems for both stress and displacement fields.

In prestack migration schemes (Wapenaar et al., 1987) a sufficient set of
boundary conditions is given through the representation theorem (Aki and
Richards, 1980). Inverse theory for generally inhomogeneous media was
originally developed (Tarantola, 1984; Kolb et al., 1986) with one boundary
condition in contrast to the migration schemes which formally uses a complete
set of boundary conditions. When recording elastic data on a free surface, it
suffices to measure the displacement vector only. The scheme of Mora (1987),
using displacement as be:darv conditions, is valid for such experimental
configurations.
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[TERATIVE INVERSION 143

[n order to obtain the correct boundary conditions, we have to measure
them. The natural way to incorporate the boundary conditicais in an inverse
scheme, is 1o include the relevant field components in the misfit function. We
propose 1o let the kernel of the misfit function be the outgoing error-energy-flux
density through the recording surface. In this way we obtain representation
theorems for the backpropagated mistit fields. These representation theorems are
identical to those for the fields themselves. as given in Appendix A.

An important point in the proposed scheme is that using the outgoing
error-energy-flux density as kernel in the misfit function requires a
preprocessing of the recorded data in the cases where a free surface is parallel
to the recording surface. If +his is the situation, then free surface related
muitiples should be removed : om the recorded data as proposed by Wapenaar
et al. (1990). A complete set of boundary conditions is then known at the
receiver surface since their removal, in principle, gives a purely outgoing field
at the receiver locations. Displacement velocity can then be calculated from
stress (pressure) and vice versa.

MISFIT FUNCTION

We will seek the solution of the seismic inverse problem within an elastic
anisotropic 3-D formulation, but give proper reductions to both the isotropic
elastic case and the acoustic case.

As kernel of the misfit function we use the error-energy-flux density.
Then the misfit function is given as

E¢= -3 f dt <ﬁ ds, [niAaij(xg,I|xs)z_\1‘)j(xg,tlxs)] , (1)
S 0

which is always positive if the field can escape the volume V enclosed by the
recording surface, S,, within the recording time T. In equation (1) AGy(x,,t [ x)
is an observed stress component minus the corresponding stress component
generated in the current model, and Af;(x,,t | x,) is an observed displacement
velocity component minus the corresponding displacement velocity component
generated in the current model. The shot location is denoted x,, but in the
following we suppress the summation over shot locations and the x, arguments
for simplicity.

It is assumed that the sources outside the volume V under consideration
are known. Hence, they do not contribute to € as error energy flowing into the
volume, since this contribution is subtracted by a similar contribution from the
forward modeling. All energy inside V is then due to secondary sources and
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144 MITTET, AMUNDLEN & ARNTSEN

must finally escape V, if we record for a sufficiently long period. However, this
norm can be very small if we cannot integrate over a closed surface. Consider
a marine-seismic experimental configuration. If an approximately horizontal
plane wave is passing a streamer on its way up, it will be reflected at the free
surface and pass the streamer on its way down. The time integral may cancel
the contributions from the upgoing flux and the equally large downgoing flux.
Also, on a free surface, where the upgoing and downgoing fluxes are equal, or
alternatively, the stresses are zero, equation (1) is not a suitable misfit function.

The mus-it function in equation (1) cannot be used without modifications.
The necessary modifications can be impiemented by preprocessing the observed
data and processing the predicted data in the same way. We follow Wapenaar
et al. (1990) and remove free-surface-related multiples from the recorded data
if there is a free-surface parallel to the recording surface or the recording
surface is on a free surface. If the free-surface-related multiples are removed
from data recorded on a free surface, then the equally large up- and down-going
fluxes are replaced by a purely up-going flux. This implies that the processed
stress components can be calculated from the displacement velocities.

As the modified misfit-functions we propose

T
— [ dt | dS, [nas,(x, 0 A8 (x, 0]

@
il

0
T

- fdt f dS, [nAg,(x,,0Au(x,,0] 2)
0

where Aoy(x,,t) is an observed preprocessed stress component minus the
correspondingly processed stress component modeled in the current model, and
Ay, (x,,1) is an observed preprocessed displacement velocity component minus the
correspondingly processed displacement velocity component modeled in the
current model. The processed predicted data may be obtained simply by
removing the relevant free surface from the numerical forward modeling.
Equation (2) is a measure of the outgoing error-energy flux at the receiver
positions with the effect of the free surface removed. Note that we have
replaced the closed surface integral in equation (1) with an integration over a
surface which may not necessarily be closed. Data are recorded with limited
spatial apertures in a seismic experiment. However, for inverse schemes based
on retropropagation, a complete description of the misfit field in a volume V
formally requires that the necessary field components are recorded on a surface
enclosing this volume. It is also acceptable to let V be the vol.me between two
parallel recording surfaces if these surfaces have infinite area. Most real data
are recorded at or near the surface of the earth, and geophone or hydrophone
arrays have finite length. Such a reduction of the aperture will inevitably lead
to reduced resolution for the gradients.
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The choice of misfit function is motivated by the fact that equation (2)
leads to boundary conditions for the misfit field which are analogous to those
of an observable field and will, in the acoustic case, give a representation
theorem similar to the Kirchhoff integral. The objective function will be
non-negative with a proper preprocessing of the observed data and proper
processing of the predicted data. An inversion scheme based on this misfit
function is similar to algorithms like those proposed and discussed by Tarantola
(1984), Mora (1987) and Crase et al. (1990), but our scheme also depends on
free surface related preprocessing (Wapenaar et al., 1990) of the observed data
as the first step.

GRADIENT CALCULATION

The expressions for the gradients with respect to Hooke’s tensor and
ensity are derived in Appendix B. We let €,,(x,1) and v,(x,t) denote forward
propagated strain and displacement velocity fields respectively, generated in the
current model. In Appendix B we obtain the backward propagated residual stress
in the current model as

Ty, = J dS, [Gliq(x.0[x,,0) * nAa,(x,,1)

= 98Giy(x,0(x,,1) * AT (X, 0/0(x)] . (3

which is similar to the surface integral term in equation (A-7), which is the
representation theorem for stress. We also define backward propagated strain
E..(x,1) and displacement velocity w,(x,t) as

Eamt) = sop®rg(x) 5 ow,(x,0 = 07'0d, 7 (x,t) . ()

Where r,(x,t) has the same units as stress.

The gradient elements of the elastic stiffness parameters are

b (X) = fdt[axeab(x,t)]Em(x,t) , 5)
0
and the density gradient is
T
glx) = - fdt[alv,,(x,t)]wn(x,t) . (6)

0

In the acoustic case equation (3) reduces to

APGGY = [ dS.00c) " n[G(x,0x,1 * AP0

-0i1G"(x,0[x,,0) * AP(x,,1)] @
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which is the Kirchhoff integral for the residual misfit pressure AP(x,0.
G%(x,t{x’,t") is here the Green’s function for the pressure in the current model.
The gradient for the bulk modulus M(x) is obtained from equation (5) as

gy = (I/MA0] | dildPx.D]IAPG.D) (8)

As is well known, migration and the first iteration of an inversion are

related (Lailly, 1984). Using the misfit function proposed here, this relation is

even more prominent: for a smooth initial model or macro model the forward

data. PP°(x.1), will be mainly downgoing, and reflections will be negligible. The

residual pressure will be approximately equal to the observed pressure Pos(x,,1),
and equation (7) will be equal to the Kirchhoff integral

PYx1) = j.ngQ(xg)“n‘{Go(x,O

Xg,t) * 3P (x,,0)
— 3G (x,0]x,,0 * P™(x,0] . 9
Equation (8) can now be written
r
oUP(x) = [IM] | dldPPOIP(x,0 . (10)
9
which, except for a time derivative on the downgoing pressure and the inverse

squared bulk modulus term, is identical to one of the U/D imaging concepts
proposed by Claerbout (1971).

UPDATE STRATEGY

In Appendix D we derive the following expressions for the parameter

updates
[ Acu]

|
| 4 J | H. H

H
, (11)

-1
affuv tstu Hc,duv I— ga/3uv
[ o4
o

which shows that the update of one parameter class in principle denends on the
gradients for all parameter classes. However, a calculation of the Hessian
tensors coupling the different parameter classes is numerically very expensive,
so these quantities have to be approximated. Under the simplifying
approximations given in Appendix D, equation (11) reduces, in the isotropic
case, to parameter updates Am, (7 = A, u, o and ¢ = 4, 4, o) for the Lame
parameters and density

(12)

Am, = =g,

bord

o T ¢ S 4 2

[ o]

o
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Here the preconditioned gradients with respect to the Lameé parameters 4, u, and
density are defined as

2,x) = Blx)g,(x) . (13)
where the preconditioner, B(x  can be approximated by a function proportional
to components of the average field energy in position x during the forward
modeling (Canadas, 1986). The gradients can be obtained from equations (5)
and (6) as

%) = 2o ® 5 2, = 22, ; g,x) = glx) . (14)

In equation (12) we see that the update .f one parameter class depends on all
the gradients as in equation (11). The «a-coefficients may be determined by a
search in the gradient direction. For each a-coefficient we have to perform a
separate forward modeling operation. It is possible to perform simplifications
in order to reduce the amount of numerical work. If we assume that only the
diagonal a-coefficients are non-zero, then we have to perform three additional
forward modeling operations per shot and not nine as for the fully coupled case.
If the data processing is to be performed over a line with several shots, we may
use only a subset of the total number of shots in order to determine these
coefficients, which gives a further reduction of forward modeling operations.

CONCLUSIONS

A modified elastic inverse scheme (iterative migration scheme) for
generally inhomogeneous media has been proposed. By using the outgoing
error-energy-flux density as the kernel in the misfit function, we obtained a
representation theorem for the retropropagated misfit field which contained a
complete set of boundary conditions.

We further concluded that with the proposed misfit function, a
preprocessing of the measured data must be performed in order to remove free-
surface-related multiples, if the recording surface is parallel to the free surface.

It was shown, within the acoustic approximation, how the proposed
scheme was reduced to a standard prestack migration scheme in the case where
a smooth initial model (macro model) was assumed.
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APPENDLU™ A
Representation theorems

The inversion formalism is simplified utilizing spatial reciprocity relations
for the Green’s tensors. We must then assume homogeneous boundary
conditions on some closed surface. This may not always be a property of the
recording surface. One way to circumvent this problem is to introduce the
recording surface as an internal artificial surface which is transparent to-the
Green’s tensor and its derivatives (Aki and Richards, 1980) and assume
homogeneous boundary conditions or the Sommerfeld radiation condition on
some outer surface which, for practical purposes, will be the edges of the
numerical model. e have tested and verified these assumptions within our
numerical scheme. Hence we assume homogeneous boundary conditions on a
closed surface S, surrounding the internal recording surface S transparent to the
Green’s tensors and their partial derivatives. Then we may use spatial
reciprocity relations of the Green's tensors in the volume enclosed by S.

The wave equation for the displacement field is
o)X, 1) — Gy (AU, = filx,1) . (A-1)
The Green’s tensor for the displacement field is determined by
003X ) = 0Cp (XY X t[X' 1) = 8, 0(x—x)S(t—-1) . (A-2)

From equations (A-1) and (A-2) the representation theorem for the
displacement field is obtained as

u,(x,0) = f dr’ j &X'y, t=t [ X, 0)f (x',t)
? 1+
+ f dr’ ¢ dSx ) {yux,t—1 |x".0Ino,(x’,t)
0 S
= [9]7u(x,t=t"|x,0)Jcypq (X Inpuq (x/, 1)}
+ J d*x’ o(x) {0, v (x,t =" | x",0)u;(x",t')
- vax =t X008, ux )} (A-3)
where ' * means t + €, where € is arbitrarily small. This limit prevents the time
integration from ending at the peak of a delta function. Assuming zero initial

conditions for the field and its time derivative, the last integral in equation (A-3)
vanishes.
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For a retropropagated displacement component U, (x,t), with .inal
conditions at time T for the field and its time derivative equal to zero, we obtain
in a similar manner

Uy = _{' dr | div,x,0]x = f )

+ fdt (de Hyux,0]x" t=1)noy(x',t)

t—

~ [0]yulx, 01X/ 1 =) ]y (X Inu  (x',t), (A-4)
where 1™ means t — €.
The wave equation for the stress field is

gi05(x,1) = (1/2)[0.071(%)8,04(x,1) + 3,0 (x) 0,0 (X, 1)]

P‘W( )
= (1/2)[8PQ'1(x)fq(x,t)+asqg‘1(x)fp(x,t)] . (A-5)
The Green'’s tensor for the stress field is given by

X)37Gyjm (.1 X 1)

Soai

—(1/2)[8,01X) 3G .t [X',1) + 3,07 (08, G o (X, 1| X',1)]
= (1/2) [0 + Ogmlpn J6x—X)S(t-1) (A-6)

where we have, s, Cpuq = (1/2)[048; + 6,0, 1. The representation theorem for
the stress field is obtained from equauons (A-5) and (A-6) a

O.x,0) = fdt’ f X' Gy (x, 11| x',000%0 7 (X (1)
1+

« [ av (_f)dS }{Gy (x,1 =t/ | X', 0, (')

0
= (3Gt =1 |x',0)][n, 03, (x" 1) 0 (x)]}
+ [ @ (10,G okt~ [ X0 1)
= Gy (=1 [X,000,65(x )} " (A7)

Assuming zero initial conditions for the field and its time derivative, the
last integral in equation (A-7) vanishes.
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For a retropropagated stress component X_(x,1), with final conditions at
time T equal to zero, we obtain

T axy = j dt’ f @*X’ Gy (x,0] X' 1= 1)350 7 (X)X, 1)

H

+ ] dr’ (ﬁdS(x') {C 50, 0fx" 1=U)nax’,t')
(- S
=[!Gy (x,01x",t=t)][n 0, (X" ) /0ix)]} . (A-8)

Displacement and stress are not independent fields for the elastic problem,
they are linked through the equation of morion and the constitutive relation.
Hence, the Green’s tensors for displacemer and stress are not independent.
This can be expressed in several ways, we give two expressions here

07 ' (X)3Gy(x tx ) = = Cmn(X") 3] Yy (x, 1 X" 1)
OV, 1|X' 1) = =07 X)Sa(0)9 G (X, x",1) (A-9)
APPENDIX B

Gradient calculation

Following Kolb et al. (1986), we assume that the gradient of the misfit
function with respect to the Hooke's tensor and density is determined by a small
variation of the misfit function of the general form

| X[ ()0l + g(RISOW] (B-1)

where g, (X) is the gradient tensor with respect to the Hooke’s tensor €, (X)
and g(x) is the gradient with respect to the density o(x). We obtain these
gradients by first calculating the change in misfit function due to a change in

cia(x) and o(x). Let Lg[c}u(x),0 x)](tg,t) be the modeling operator determining
the stress tensor at the receivers in the current medium with a given source
function, and let Ly[c ,Jk,(x) 0°(x)](x,,1) be the modeling operator determining the
displacement velocny in the currem medium with the same source. A change in
the medium parameters will cause the following change in the error norm,

T
Ae = — f dt f dS, n {(L[c% + Acy,, 0°+A0] - L. [ch 0° DAV, ix,,1)

+ (L[el% + Acy, 0°+20] = Liledu, @ "NAo(x,.0} (B-2)
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when we retain terms linear in the error fields. The difference in the modeled
stress and displacement velocity fields is obtained by use of the
Lippmann-Schwinger equations, given in Appendix C, as follows: we move the
single Green’s tensor, generated in the unperturbed model to the left side of the
equations (C-1) and (C-2), then we convoive these expressions with the proper
source terms. With f.{x,1) equal to a component of the force density we use

Ty(x,0 = (1/2) 8o ' (0fi(x,n) + do ' (0 (x,0]
f(x,0) = 3f(x,0)
fience, we obtain
Ae = f dt J ds, f d’x’ f d*x" G (X, 1] X7,0) *
(A8 s 1X)07G 5 (X't x",0) = 97AD(X)G (x| x”,0)] *

T (x",0n,Av, (x,,0)

< Jafas, [ e [ a@xrxex,0 *

x// ,O)] %

[A0(x")31y,(x",t]x",0) = 0jAC,(X);yu(x',t

£, OnAG (X0 . (B-3)

b 0 0 -
We convolve the unperturbed Green’s tensors G ., and y;, with the

difference fields Av, and Ag,, to obtain the back propagated fields, and using
equation (A-9) we express all back propagated fields with the Green’s tensor for
stress. At this step we also assume that the physical parameters can be measured
on the recording surface. There will be additional terms giving corrections to
the gradients on the recording surface only, if the physical parameters are not
known in these positions.

In order to find a gradient expression for € with respect to the physical
parameters, we assume small perturbations and keep terms to first order in the
variation of the physical parameters. Hence, we replace Gy, and y,, with G,
and ¥° respectively, which are the Green's tensors calculated in the known
medium (macro model). We let Ae = &€, Ap = Sp, Ab - —380/0?, ACum =
OCoomns ASyprn > OSumn, and for small perturbations we have to first order
ClapSpgi =~ Sijpa®Coaii-

Equation (B-3) can now be divided into the following four terms

Py
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N

e, = f dix l di{a€,,(x,0]
Srsa 0] | 08,6 (x.01x,,0 * 1,80, (2, 0]0Cmml0) (B-4)
Sey = — fd3x f dt[o€,,(x,1]
9
St X[ f ng{afG&jq(X,Ohg,t)} * 1,A0,4(X,,0/0(¢, )16C,1m(x) , (B-5)
T
s = | &x | dw.ixn
1
07003, | 48,62, x.0]x,0 * nAa,ix,,0100() (B-6)
Sy = — fd3x f dev,(x,1)
0

07 W9, | dS,{05GY, (x,0(x,.0} * nAg,(x,0/o(x, )l6o®) , (B-7)
where €,(x,1) and v,(x,t) are forward propagated strain and displacement

velocity fields respectively, generated in the current model. We define the
backward propagated stress in the current model as

Ta{x,0) = J dS,[Gq(x,0]x,,t) * nAa (x,,1)
—{08GY(x,0|x,,0} * n Ao, (x,,0)/0(x,)] , (B-8)
which is similar to the surface integral term in equation (A-8), which is the
representation theorem for stress. We also define backward propagated strain
E..(x,t) and displacement velocity w,(x,t) as
E..(x,0) = s a®ry(x,t)
ow,(x,1) = 07 (X)3, T(X,1) . (B-9)

Note that 7,,(x,t) is not a ‘stress-like’ field but has the same units as stress.

Comparing equations (B-4) to (B-7) with equation (B-1), we obtain for the
gradient of elastic stiffness parameters

T
) = [ dilde,(UIE(x0 (B-10)
0

k- d

pAIe S o3

(IR ST o e W
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and for the density gradient

g0 = - | dildv,0lw, (D (B-11)

The gradients (B-10) and (B-11) have the same form as given by
Tarantola (1987), except for a time derivative ¢ 1 the backpropagated fields. This
difference can be explained by the fact that . arantola (1987) uses a different
misfit function. Actually, our boundary condition for the backpropagated field
is spatially more high frequent than in Tarantola (1987), this will compensate
for the mentioned time derivative such that gradients generated with both
methods will have the same spatial frequency content.

APPENDIX C
The Lippmann-Schwinger equations

The Lippmann-Schwinger equations for the displacement Green's tensors
are obtained in a similar way as the representation theorems. These equations
require that the Green’s tensors are known in a given model and describe how
the Green’s tensors change if the medium changes. The change in medium
parameters need not be small for these equations to be valid. The relations
between the physical parameters in the given model and the modified model are
o(x) = 0°(x) + Ap(x), b(x) = b(x) + Ab(X), cyu(x) = clu(x) + Acy(x) and
>md(x) = shulx) o+ _\.sukl(x) where b(x) is inverse density. The
Lippmann-Schwinger equation for the dlsplacement Green’s tensor is

v X)) = At x" ) + Id3x' J- ci“'j/gm(x,tlx’,t’)

i

[—{Ap(x) @ yu(x' U/ [X" 1) = 0]Acy (X't |x",t")}] . (C-1)

njpq

The Lippmann-Schwinger equation for the stress Green’s tensor is
"oen —- 0 " 11 3.
G (1 X" ") = Gog(x,t[x"t") + fdxfdtqumnxthr

[~ {28, (X)32Gg (X' 1| X" t") = 3nAb()IGlx' .t [x",t")}] . (C-2)

Here 7.;(x,t|x",t") and G, (x,t|x",t") are Green's tensors for the modified or
perturbed medium. y3(x,t|x”,t") and G;(x,t|x",t") are the assumed known
Green’s tensor calculated in the unperturbed medium. The fields can be obtained

by convolving these expressions with the proper source terms.
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APPENDIX D

Parameter update with a fully coupled subspace method

Let Ty(x,,t]x) and W4 (x|x,,1) be shorthand notations for integral operators
with kernels Kq(x,,1}x) and Hi(x{x,,1) respectively, where Q may be a set of
indices and the dagger (¥) denotes a Hermitian conjugate. As an example,

Avi(x,,t) = [(x,,t|x)Am(x) = jdlxKi(xg,qx)Am(x)

The Lippmann-Schwinger equations (C-1) and (C-z, describe an integral
cnerator transforming a change in medium parameters into a change in the
r: ulting wavefield,

-

] Av.(x,,T) ﬂ| Thape X110 Tilxgt]x) i— ACippg (X)
(D-1)

| |
* _\aﬁ(xg,t)J i [ npa (X £ X) [y(x,,tx) | L Ap(x)

On the other hand, the gradients are obtained from an integral operator on the
difference data,

[ Zon(X) i faa X[ X D) Wl |x0 { Avi(X,,1)
= - (D-2)
g(x) Wl(x|x,,1) W (x| x,,1) L Aoy(x,,1)

In the linear case W§(x|x,,1) can be shown to be equal to x| x,,1). Both
Wix|x,t) and [4(x|x,1) are then obtained by using the first Born
approximation to the Lippmann-Schwinger equations.

In the following we drop spatial and temporal arguments for simplicity.
Substituting (D-1) into (D-2) we obtain the relation

gaﬁyv Ha/3yv rstu Ha/iyu ACrstu
= - , (D-3)
N | How H | | 2e
with the inverse relation
ACz-su.l Ha/3uu rstu Hajzyv - g043yv
- - . (D-4)
| do | | How H | g

Equation (D-4) has now a well-known form for the parameter update at iteration
n:
mi*t = my + Am) Am§ = -Hypg (D-5)

de
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where also P may be a set of indices. Here m,, denotes elastic parameters or
density.

For the isotropic case we assume that (D-4) can be written

Acmu [ ’, R«.-stum.iuu Rfsm I
' |
i

(D-4)

aq

&

H
[

4e}

R

b

and further that the R, operators consist of a common spatial term multiplied
with a term with constant coefficients resembling the behavior of c,,. As an
example,

Ruwuwl® = | EXR(x[x)[ad,8, +b(0.5,+6.5,)]
(000500 + d(6,,850+ 05001 - (D-7)
We let B(x) represent the diagonal of R(x|x’), that is, B(x) = R(x|x). It may
be shown that B(x) can be approximated by a function proportional to
components of the average field energy in position x during the forward

modeling.

We also observe that for the isotropic case, equation (B-1) reduces to

|

8¢ = | PX[ZumXOCumm) + 2(05O(]

f X[ XVIAK) + 28 (WSu(x) + gx)oo(x)] . (D-8)

e gradients with respect to the Lamé parameters A and u, and density are
given by equation (14). We define the preconditioned gradients as

g:(x) = Bg, 0 ; g,&) = Bg,x) ; g = Bxg,x) . (D-9)

In the following we let Roman indices be related to spatial directions
whereas Greek indices are related to the physical parameters A, u and . Using
(D-6), (D-7) and (D-9) we find for the parameter updates

Am, = -a,g, (D-10)
Note that the update of one parameter class is in principle dependent on all the
gradients.

The processed error norm given in equation (2) is to be minimized with
respect to the steplengths ¢,,. Defining
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AW, (x,0 = [L(m, + €g,) - Lim)l/e (D-11)
and
AZyolx,0) = [Ly(m, + €g,) — Ly(m)]/e (D-12)

we obtain for the parameter update

H/J’*/mpaw = 6’37 ’ (D-13)
where
O, = fd‘xgg(x)g,(X) , (D-14)
and T
H.B'/W = - J dt f dsg[Az";m(xg't)niA“/j'l¢(xg'[)
b
+ AW (x,, 0n A% (x,,0]™ (D-15)

where again the errect of free surfaces must be removed. @, is given by a 9x9
system of linear equations. We have the possibility to reduce this system
assuming less coupling between the physical parameters. A further reduction in
numerical costs can be obtained by using a subset of all shots when calculating
these steplengths.
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